18.152 PROBLEM SET 2 due February 26th 9:30 am

You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Let $\Omega \subset \mathbb{R}^n$ be a convex open set with smooth boundary $\partial\Omega$, and let $w : \overline{\Omega} \to \mathbb{R}$ be a smooth function satisfying $\Delta w = 0$. Suppose that a smooth solution $u : \overline{\Omega} \times [0,T] \to \mathbb{R}$ to the heat equation satisfies $u(\vec{x},t) = w(\vec{x}) = g(\vec{x})$ on $\partial\Omega \times [0,T]$ and $u(\vec{x},0) = g(\vec{x})$ for a smooth function g. Establish upper bounds for |u| and $||\nabla u||$ in terms of g, w, and their derivatives.

Problem 2. Let $\Omega \subset \mathbb{R}^n$ be an open set with smooth boundary $\partial\Omega$. Suppose that there are two smooth solutions u and v to the heat equation defined over $\overline{\Omega} \times [0,T]$ such that $u(\vec{x},T) = v(\vec{x},T)$ holds in $\overline{\Omega}$ and $u_{\nu}(\vec{x},t) = v_{\nu}(\vec{x},t)$ holds on $\partial\Omega \times [0,T]$, where ν denote the outward pointing unit normal vector of $\partial\Omega$. Show that $u(\vec{x},t) = v(\vec{x},t)$ holds on $\overline{\Omega} \times [0,T]$.

Problem 3. Let $\Omega \subset \mathbb{R}^n$ be an open set with smooth boundary $\partial\Omega$ and the unit volume $|\overline{\Omega}| = \int_{\overline{\Omega}} d\vec{x} = 1$. Suppose that there is a smooth solution $u: \overline{\Omega} \times [0, 1)$ to the semilinear heat equation

$$u_t = \Delta u + u^2.$$

Moreover, $\int_{\Omega} u(\vec{x}, 0) d\vec{x} = 1$ and $u_{\nu}(\vec{x}, t) = 0$ holds on $\partial \Omega \times [0, 1)$, where ν is the outward pointing unit normal vector to $\partial \Omega$. Show

$$\int_{\overline{\Omega}} u(\vec{x}, t) d\vec{x} \ge \frac{1}{1-t}.$$

Problem 4. Suppose that a positive smooth function $u : \mathbb{R}^n \times (-\infty, T] \to \mathbb{R}$ is a solution to the heat equation. Moreover, for each $i \in \{1, \dots, n\}$ we have $u(\vec{x}, t) = u(\vec{x} + \vec{e_i}, t)$ where $\vec{e_1} = (1, 0, \dots, 0), \vec{e_2} = (0, 1, 0, \dots, 0), \dots, \vec{e_n} = (0, \dots, 0, 1)$. Show that $u_t \ge 0$.